Michael Rust, PhD Michael Rust
Molecular basis of systems behavior

Assistant Professor, Molecular Genetics and Cell Biology, Institute for Genomics and Systems Biology

B.S. (Physics/Mathematics) Harvey Mudd College, 2001
Ph.D. (Physics) Harvard University, 2006


Research Summary

My laboratory combines optical microscopy of living cells and single molecules with biochemistry and mathematical modeling to understand the function of small networks of strongly interacting biological molecules. These projects are motivated by the belief that explaining the origin of systems properties such as robustness to perturbations and adaptation to changing input will require understanding the nature of the molecular events that comprise the interactions. To this end, we are interested in better understanding the intracellular environment in which biological systems function, including the role of subcellular localization, fluctuations in copy numbers of molecules, and changes in shared pools of metabolites. We are actively developing optical and biochemical tools to study and control these effects in vivo and in vitro, including superresolution imaging based on localization of single molecules (STORM), which permits the study of protein organization within microbial cells. We have recently been focused on a remarkable circadian clock found in photosynthetic cyanobacteria. This may be the simplest of all circadian clocks, as the core oscillator can be reconstituted in a test tube using three purified proteins (KaiA, KaiB and KaiC). The interactions between these proteins generate a stable %7E24-hour oscillation in the level of phosphorylated KaiC. We recently showed that phosphorylation occurs at two sites on KaiC and that the modification of these sites follows strong kinetic preferences. This pattern of multisite phosphorylation coupled to protein-protein interaction is sufficient to drive stable oscillations. We are studying the flow of timing information into the clock and the fidelity of information storage within the oscillator itself with the hope that the mechanisms employed here will have broad applicability throughout biology.

Selected Publications

Bates, M., Huang, B., Rust, M. J., Dempsey, G., Wang, W., Zhuang, X. (in press). "Sub-diffraction-limit imaging with Stochastic Optical Reconstruction Microscopy (STORM)." Nobel Volume on Single Molecule Spectroscopy in Chemistry, Springer Publishing.

van der Schaar, H. M., Rust, M. J., Chen, C., van der Ende-Metselaar, H., Wilschut, J., Zhuang, X., Smit, J. M. (2008). "Dissecting the cell entry pathway of dengue virus by single-particle tracking in live cells." PLoS Pathogens 4: e1000244. (PLoS)

Rust, M. J., Lakadamyali, M., Brandenburg, B., Zhuang, X. (2008). "Single-virus tracking in live cells." in P. R. Selvin, T. Ha (Eds.) Single Molecule Techniques: A Laboratory Manual, Cold Spring Harbor Laboratory Press.

Rust, M. J., Markson, J. S., Lane, W. S., Fisher, D. S., O'Shea, E. K. (2007). "Ordered phosphorylation governs oscillation of a three-protein circadian clock." Science 318: 809-812. (Science)

van der Schaar, H. M., Rust, M. J., Waarts, B., van der Ende-Metselaar, Kuhn, R. J., Wilschut, J., Zhuang, X., Smit, J. M. (2007). "Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking." J. Virol. 81: 12019-12028. (J. Virology)

Rust, M. J., Bates, M., Zhuang, X. (2006). "Sub-diffraction-limit imaging by Stochastic Optical Reconstruction Microscopy (STORM)." Nature Methods 3: 793-795. (Nature Methods)

Lakadamyali, M., Rust, M. J., Zhuang, X. (2006). "Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes." Cell 124: 997-1009. (Cell)

Rust, M. J., Lakadamyali, M., Zhang, F., Zhuang, X. (2004). "Assembly of endocytic machinery around individual influenza viruses during viral entry." Nature Struct. Mol. Biol. 11: 567-573. (Nature Structure)

Lakadamyali, M., Rust, M. J., Babcock, H. P., Zhuang, X. (2003). "Visualizing infection of individual influenza viruses." Proc. Natl. Acad. Sci. USA 100: 9280-9285. (Proc. Natl. Acad. Sci.)


© 2015 Department of Molecular Genetics and Cell Biology ® The University of Chicago
CLSC 1106, 920 E 58th Street, Chicago, IL 60637
Phone: 773-702-1620 | Fax: 773-702-3172 | | Maps & Directions |

to MGCB home page